Let $(X, \mathscr{A}, P)$ be a probability space and $\mathscr{B}$ a sub-$\sigma$-algebra of $\mathscr{A}$. Some results on regular conditional probabilities given $\mathscr{B}$ are proved. Using ...
Let $Y_1, \cdots, Y_r$ be independent random variables, each uniformly distributed on $\mathscr{M} = \{1,2, \cdots, M\}$. It is shown that at most $N = 1 + M + \cdots ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results